Authorship attribution based on Life-Like Network Automata
نویسندگان
چکیده
منابع مشابه
Authorship attribution based on Life-Like Network Automata
The authorship attribution is a problem of considerable practical and technical interest. Several methods have been designed to infer the authorship of disputed documents in multiple contexts. While traditional statistical methods based solely on word counts and related measurements have provided a simple, yet effective solution in particular cases; they are prone to manipulation. Recently, tex...
متن کاملAuthorship Attribution Using Word Network Features
In this paper, we explore a set of novel features for authorship attribution of documents. These features are derived from a word network representation of natural language text. As has been noted in previous studies, natural language tends to show complex network structure at word level, with low degrees of separation and scale-free (power law) degree distribution. There has also been work on ...
متن کاملAuthorship Attribution
Authorship attribution, the science of inferring characteristics of the author from the characteristics of documents written by that author, is a problem with a long history and a wide range of application. Recent work in “non-traditional” authorship attribution demonstrates the practicality of automatically analyzing documents based on authorial style, but the state of the art is confusing. An...
متن کاملMaximal Repeats Enhance Substring-based Authorship Attribution
This article tackles the Authorship Attribution task according to the language independence issue. We propose an alternative of variable length character n-grams features in supervised methods: maximal repeats in strings. When character ngrams are by essence redundant, maximal repeats are a condensed way to represent any substring of a corpus. Our experiments show that the redundant aspect of n...
متن کاملComputer-Based Authorship Attribution Without Lexical Measures
The most important approaches to computer-assisted authorship attribution are exclusively based on lexical measures that either represent the vocabulary richness of the author or simply comprise frequencies of occurrence of common words. In this paper we present a fully-automated approach to the identification of the authorship of unrestricted text that excludes any lexical measure. Instead we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2018
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0193703